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ABSTRACT

Phase mixing is an essential component of the equilibration of perturbed galactic disks. We develop a

linear perturbative formalism to compute the response of an inhomogeneous stellar disk embedded in a

non-responsive dark matter (DM) halo to various perturbations such as bars, spiral arms and encounters

with satellite galaxies. Without self-gravity to reinforce it the response of a Fourier mode phase mixes

away due to an intrinsic spread in the vertical (Ωz), radial (Ωr) and azimuthal (Ωϕ) frequencies, giving

rise to local phase-space spirals. The z − vz phase spiral turns out to be one-armed (two-armed)

for vertically anti-symmetric (symmetric) bending (breathing) modes. Among bar and spiral arm

perturbations, only transient ones that vary over timescales (τP) comparable to the vertical oscillation

period (τz = 2π/Ωz) can trigger vertical phase spirals. The impulsive (τP < τ = 1/(nΩz + lΩr +mΩϕ))

response for each (n, l,m) mode is power law (∼ τP/τ) suppressed; the adiabatic (τP > τ) response

is on the other hand exponentially weak (∼ exp [− (τP/τ)
α

]) except resonant (τ → ∞) modes, where

α is dictated by the exact time-dependence of the perturber. Slower (τP > τz) perturbations, which

for satellite galaxies correspond to more distant encounters, induce stronger bending modes. Due to

the tidal distortion of the disk, the in-plane response for satellite impacts is generally dominated by

the (l,m) = (0,−2) mode, which resembles a two-armed warp (n = 1) or spiral (n = 2) in the x − y

plane. Our analysis suggests that the Solar neighborhood response of the Milky Way (MW) disk due

to satellite encounters is predominantly caused by Sagittarius. Phase mixing occurs more slowly and

therefore phase spirals turn out to be more loosely wound in the outer disk and in presence of an

ambient DM halo. We present a novel technique to constrain the MW disk plus halo potential using

the pitch angle of the phase spiral.

1. INTRODUCTION

Disk galaxies are low entropy systems characterized by large-scale ordered motion and are therefore highly responsive

to perturbations. Following a time-dependent gravitational perturbation, the actions of the disk stars are modified.

This in turn causes a perturbation in the distribution function (DF) of the disk known as the response. Over time the

response decays away as the system ‘relaxes’ towards a new quasi-equilibrium via collisionless processes that include

kinematic processes like phase mixing (loss of coherence in the response due to different oscillation frequencies of

stars) and secular/self-gravitating/collective processes like Landau damping (loss of coherence due to wave-particle

interactions, Lynden-Bell 1962). As pointed out by Sridhar (1989) and Maoz (1991), phase mixing is the key ingredient

of all collisionless relaxation and re-equilibration.

The timescale of collisionless equilibration is typically longer than the orbital periods of stars. Therefore disk galaxies

usually harbour prolonged features of incomplete equilibration following a perturbation, e.g., bars, spiral arms, warps

and other asymmetries. An intriguing example is the one-armed phase-space spiral, or phase spiral for short, discovered

in the Gaia DR2 data (Gaia Collaboration et al. 2018) by Antoja et al. (2018) and studied in more detail in subsequent

studies (e.g., Bland-Hawthorn et al. 2019; Laporte et al. 2019; Li & Widrow 2021; Li 2021; Gandhi et al. 2022). Antoja
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et al. (2018) plotted the density of stars in the Solar neighborhood in the (z, vz)-plane of vertical position, z, and

vertical velocity, vz, and noticed a faint spiral pattern which became more pronounced when colour-coding the (z, vz)-

‘pixels’ by the median radial or azimuthal velocities. The one-armed spiral shows 2-3 complete wraps like a snail shell,

and is interpreted as an indication of vertical phase mixing following a perturbation that is anti-symmetric about the

midplane (bending mode) and occurred ∼ 500 Myr ago. More recently, Hunt et al. (2022) used the more extensive

Gaia DR3 data to study the distributions of stars in z − vz space at different locations in the MW disk. They found

that unlike the one-armed phase spiral or bending mode at the Solar radius the inner disk shows a two-armed phase

spiral that corresponds to a breathing mode or symmetric perturbation about the midplane. They inferred that while

the one-armed spiral in the Solar neighborhood might have been caused by the impact of a satellite galaxy such as

the Sagittarius dwarf, the two-armed spiral in the inner disk could not have been induced by the same since almost all

satellite impacts are far too slow/adiabatic from the perspective of the inner disk. Rather they attributed the spiral

arm as a potential triggering agent of the two-armed phase spiral.

The phase spiral holds a treasure-trove of information about the perturbative history and gravitational potential of

the disk and can therefore serve as an essential tool for galactoseismology (Widrow et al. 2014; Johnston et al. 2017).

For a given potential, the winding of the spiral is an indication of the time elapsed since the perturbation occurred

with older spirals revealing more wraps. A one-armed (two-armed) phase spiral corresponds to a bending (breathing)

mode. Which mode dominates, in turn, depends on the time-scale of the perturbation, with temporally shorter

(longer) perturbations (e.g., a fast or slow encounter with a satellite) predominantly triggering breathing (bending)

modes (Widrow et al. 2014; Banik et al. 2022).

In addition to depending on the nature of the perturbation, the phase spiral also encodes information about the

oscillation frequencies of stars and thus the detailed potential. In particular, the shape of the spiral depends on how

the vertical frequencies, Ωz, vary as a function of the vertical action, Iz, which in turn depends on the underlying

potential. Finally, the (coarse-grained) survivability of the phase spiral depends on both the spatio-temporal nature of

the perturbation and the frequency structure. In Banik et al. (2022) (hereafter Paper I) we showed that non-adiabatic

and spatially localized perturbations minimize the damping of the phase spiral amplitude due to lateral mixing between

stars with different lateral velocities, giving rise to long-lived phase spirals.

Paper I addresses the problem of inferring the nature of the perturbation from the amplitude and structure of

the phase spiral using a model of an infinite, isothermal slab for the unperturbed disk. This simple yet insightful

model provides us with essential physical understanding of the perturbative response of disks without the complexity

of modelling a realistic, inhomogeneous disk. However it suffers from certain glaring caveats: (i) lateral uniformity

leading to an incorrect global structure of the response in the lateral direction, (ii) Maxwellian distribution of velocities

in the lateral direction that overpredicts lateral mixing and consequent damping of the phase spiral amplitude, (iii)

absence of dark matter (DM) halo and (iv) absence of self-gravity of the response. In this paper we relax the first three

assumptions. We consider an inhomogeneous disk characterized by a realistic DF similar to the pseudo-isothermal DF

(Binney 2010), that properly captures the orbital dynamics of the disk stars in 3D. In addition, we consider the effect

of an underlying DM halo which for the sake of simplicity we consider to be non-responsive. This ambient DM halo

alters the potential and thus the frequencies of stars, which can in turn affect the shape of the phase spiral and its

coarse-grained survival. Since in this paper we are primarily interested in the phase mixing of the disk response that

gives rise to phase spirals, we ignore self-gravity of the response which to linear order spawns coherent normal mode

oscillations of the disk (see Mathur 1990; Weinberg 1991, for self-gravitating response of isothermal slabs).

This paper is organized as follows. Section 2 describes the standard linear perturbation theory for collisionless systems

and its application to a realistic disk galaxy embedded in a DM halo that is exposed to a general perturbation. Sections 3

and 4 are concerned with computing the disk response for different perturber models. In Section 3 we compute the

disk response and phase spirals for bars and spiral arms. We compute the same for encounters with satellite galaxies

in Section 4. Section 5 describes how phase spirals can be used to constrain the galactic potential. We summarize our

findings in Section 6.
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2. LINEAR PERTURBATION THEORY FOR COLLISIONLESS SYSTEMS

2.1. Linear perturbative formalism

Let the unperturbed steady state Hamiltonian of a collisionless stellar system be H0 and the corresponding DF be

given by f0, which satisfies the CBE,

[f0, H0] = 0. (1)

Here the square brackets denote the Poisson bracket. In presence of a small time-dependent perturbation in the

potential, ΦP(t), the perturbed Hamiltonian can be written as

H = H0 + ΦP(t) + Φ1(t), (2)

where Φ1 is the gravitational potential related to the response density, ρ1 =
∫
f1d3v, via the Poisson equation,

∇2Φ1 = 4πGρ1. (3)

The perturbed DF can be written as

f = f0 + f1, (4)

where f1 is the linear order perturbation in the DF. In the weak perturbation limit where linear perturbation theory

holds, the time-evolution of f1 is dictated by the following linearized form of the CBE:

∂f1
∂t

+ [f1, H0] + [f0,ΦP] + [f0,Φ1] = 0. (5)

Throughout this paper we neglect the self-gravity of the disk, which implies that we set the polarization term, [f0,Φ1] =

0. The implications of including self-gravity are discussed in Paper I.

2.2. Response of a Galactic Disk to a realistic perturbation

The dynamics of a realistic disk galaxy like the Milky Way (MW) is quasi-periodic, i.e., can be characterized by

oscillations in the azimuthal, radial and vertical directions. In close proximity to the mid-plane, the potential of the

unperturbed galactic disk can be approximated by a separable function of the galactocentric radius, R, and the vertical

distance, z. Thus the Hamilton-Jacobi equation also becomes separable, implying that all stars confined within a few

vertical scale heights from the mid-plane of the disk are on regular, quasi-periodic orbits that are characterized by a

radial action, IR, an azimuthal action Iϕ, and a vertical action Iz. Hence, the motion of each star is characterized by

three frequencies:

ΩR =
∂H0

∂IR
, Ωϕ =

∂H0

∂Iϕ
, Ωz =

∂H0

∂Iz
. (6)

This quasi-periodic nature of the orbits near the mid-plane is approximately preserved even in presence of a DM halo.

However, the halo deepens the overall potential increasing the frequencies of the disk stars.

In terms of these canonically conjugate action-angle variables, the linearized form of the CBE given in Equation (5)

becomes

∂f1
∂t

+
∂H0

∂Iz

∂f1
∂wz

+
∂H0

∂IR

∂f1
∂wR

+
∂H0

∂Iϕ

∂f1
∂wϕ

− ∂ΦP

∂wz

∂f0
∂Iz

− ∂ΦP

∂wR

∂f0
∂IR

− ∂ΦP

∂wϕ

∂f0
∂Iϕ

= 0. (7)

Since the stars move along quasi-periodic orbits characterized by actions and angles, we can expand the perturbations,

ΦP and f1, as discrete Fourier series in the angles as follows

ΦP (w, I, t) =

∞∑
n=−∞

∞∑
l=−∞

∞∑
m=−∞

exp [i(nwz + lwR + mwϕ)] Φnlm (I, t) ,

f1 (w, I, t) =

∞∑
n=−∞

∞∑
l=−∞

∞∑
m=−∞

exp [i(nwz + lwR + mwϕ)] f1nlm(I, t), (8)
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where w = (wz, wR, wϕ) and I = (Iz, IR, Iϕ). Substituting these Fourier expansions in equation (7) yields the following

differential equation for the evolution of f1nlm:

∂f1nlm
∂t

+ i(nΩz + lΩR + mΩϕ)f1nlm = i

(
n
∂f0
∂Iz

+ l
∂f0
∂IR

+ m
∂f0
∂Iϕ

)
Φnlm. (9)

This can be solved using the Green’s function technique, with the initial condition, f1nlm(ti) = 0, to yield the following

closed integral form for f1nlm:

f1nlm(I, t) = i

(
n
∂f0
∂Iz

+ l
∂f0
∂IR

+ m
∂f0
∂Iϕ

)∫ t

ti

dτ exp [−i(nΩz + lΩR + mΩϕ)(t− τ)] Φnlm(I, τ). (10)

The (n, l,m) Fourier mode of every star or phase-space element acts as a forced oscillator with three different natural

frequencies, nΩz, lΩR and mΩϕ, which is being driven by an external time-dependent perturber potential, Φnlm. A

similar expression for the DF perturbation has been derived by Carlberg & Sellwood (1985) in the context of spiral

arm induced perturbations and radial migrations in the galactic disk, and by other previous studies (e.g., Lynden-Bell

& Kalnajs 1972; Tremaine & Weinberg 1984; Carlberg & Sellwood 1985; Weinberg 1989, 1991, 2004; Kaur & Sridhar

2018; Banik & van den Bosch 2021a; Kaur & Stone 2022) in the context of dynamical friction in spherical systems.

To obtain the final expression for f1nlm, we need to specify the DF f0 of the unperturbed galaxy, as well as the

spatio-temporal behavior of the perturber potential, ΦP, which is addressed below.

2.3. The unperturbed galaxy

Under the radial epicyclic approximation (small IR), the unperturbed DF, f0, for a rotating MW-like disk galaxy

can be well approximated as a pseudo-isothermal DF, i.e., written as a nearly isothermal separable function of the

azimuthal, radial and vertical actions. Following Binney (2010), we write

f0 =
1

π

(
ΩϕΣ

κσ2
R

)
Rc

(
1 + tanh

Lz

L0

)
× exp

[
−κIR

σ2
R

]
× 1√

2πhzσz

exp

[
−Ez(Iz)

σ2
z

]
. (11)

The vertical structure of this disk is isothermal, while the radial profile is pseudo-isothermal. Here Σ = Σ(R) is the

surface density of the disk. Lz is the z-component of the angular momentum, which is equal to Iϕ, Rc = Rc(Lz) is the

guiding radius, Ωϕ is the circular frequency and κ = κ(Rc) = limIR→0 ΩR is the radial epicyclic frequency (Binney &

Tremaine 1987). If L0 is sufficiently small, then we can further approximate the above form for f0 as

f0 ≈
√

2

π3/2 σzhz

(
ΩϕΣ

κσ2
R

)
Rc

exp

[
−κIR

σ2
R

]
exp

[
−Ez(Iz)

σ2
z

]
Θ(Lz) , (12)

where Θ(x) is the Heaviside step function. Thus we assume that the entire galaxy is composed of prograde stars with

Lz > 0.

The corresponding density profile can be written as a product of an exponential radial profile and an isothermal

(sech2) vertical profile, i.e.,

ρ(R, z) = ρc exp

[
− R

hR

]
sech2

(
z

hz

)
, (13)

where hR and hz are the radial and vertical scale heights respectively. Throughout we adopt the thin disk limit, i.e.,

hz ≪ hR. The surface density profile is given by

Σ(R) =

∫ ∞

−∞
dz ρ(R, z) = Σc exp

[
− R

hR

]
, (14)

where Σc = ρchz is the central surface density of the disk. The above density profile can be approximated by a

combination of three Miyamoto & Nagai (1975) disk profiles (Smith et al. 2015), i.e., the 3MN profile as implemented

in the Gala Python package (Price-Whelan 2017; Price-Whelan et al. 2020). The corresponding disk potential is given

by

Φd(R, z) = −
3∑

i=1

GMi√
R2 +

(
ai +

√
z2 + b2i

)2 , (15)
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where Mi, ai and bi, with i = 1, 2, 3, are the mass, scale radius and scale height corresponding to each of the MN

profiles. Throughout we use the 3MN potential to compute the frequencies of the disk stars.

The MW disk is believed to be embedded in a much more extended DM halo, which we model using a spherical

NFW (Navarro et al. 1997) profile with potential

Φh(R, z) = −GMvir

f(c)

1√
R2 + z2

ln

(
1 +

√
R2 + z2

rh

)
. (16)

Here Mvir is the virial mass of the halo, rh is the scale radius, c = Rvir/rh is the concentration (Rvir is the virial

radius), and f(c) = ln (1 + c) − c/(1 + c). The combined potential experienced by the disk stars is thus given by

Φ0(R, z) = Φd(R, z) + Φh(R, z). (17)

The total energy of a disk star under the radial epicyclic approximation is E = ΩϕLz +κIR +Ez, where the vertical

part of the energy is given by Ez = v2z/2+Φz(Rc, z), with Rc(Lz) the guiding radius given by L2
z/R

3
c = ∂Φ0/∂R|R=Rc .

The vertical potential, Φz(Rc, z), is given by

Φz(Rc, z) = Φ0(Rc, z) − Φ0(Rc, 0). (18)

As discussed above, the vertical (radial) density profile is well described by the isothermal sech2 (exponen-

tial) profile in the solar neighborhood. Thus, near the sun, Φz(R, z) ≈ 2σ2
z(R) ln [cosh(z/hz)] and Φd(R, 0) ≈

πGΣchR [I1(R/2hR)K0(R/2hR) − I0(R/2hR)K1(R/2hR)], where In and Kn are modified Bessel functions of the first

and second kind, respectively.

The vertical action, Iz, can be obtained from the unperturbed energy, Ez, as follows

Iz =
1

2π

∮
vz dz =

2

π

∫ zmax

0

√
2[Ez − Φz(Rc, z)] dz, (19)

where Φz(Rc, zmax) = Ez. This implicit equation can be inverted to obtain Ez(Rc, Iz). The time period of vertical

oscillation can then be obtained using

Tz(Rc, Iz) =

∮
dz

vz
= 4

∫ zmax

0

dz√
2 [Ez(Rc, Iz) − Φz(Rc, z)]

, (20)

which yields the vertical frequency, Ωz(Rc, Iz) = 2π/Tz(Rc, Iz).

We assume a radially varying vertical velocity dispersion, σz, satisfying (Binney & Tremaine 2008)

σ2
z(R) = 2πGhzΣ(R). (21)

We also assume a similar exponential profile for σ2
R such that the ratio, σR/σz is constant throughout the disk (Binney

2010) and equal to the value at the solar vicinity.

Throughout, for the purpose of computing the disk response, we assume typical MW like parameters for the various

quantities, i.e., R⊙ = 8 kpc, disk mass Md = 5× 1010 M⊙, hR = 2.2 kpc, σR(R⊙) = 35 km/s, hz = 0.4 kpc (McMillan

2011; Bovy & Rix 2013). For the NFW DM halo, we adopt Mvir = 9.78 × 1011 M⊙, rh = 16 kpc, and c = 15.3 (Bovy

2015).

Substituting the expression for f0 given by Equation (12) in Equation (10), we obtain the following integral form

for f1nlm,

f1nlm(I, t) ≈ − 2i

πσ2
R

1√
2πhzσz

[{(
nΩz

σ2
z

+
lκ

σ2
R

)(
ΩϕΣ

κ

)
−m

d

dLz

(
ΩϕΣ

κ

)}
Θ(Lz) −m

ΩϕΣ

κ
δ(Lz)

]

× exp

[
−κIR

σ2
R

]
exp

[
−Ez(Iz)

σ2
z

] ∫ t

ti

dτ exp [−i(nΩz + lκ + mΩϕ)(t− τ)] Φnlm(I, τ). (22)

As we shall see, the first order disk response expressed above phase mixes away and gives rise to phase spirals due

to oscillations of stars with different frequencies except when they are resonant with the frequency of the perturber.



6

However this ‘direct’ response of the disk does not include certain effects. First of all, we ignore the self-gravity of the

response. As discussed in Paper I, to linear order self-gravity gives rise to normal mode oscillations of the disk that

are decoupled from the phase mixing component of the response which is what we are interested in. Secondly, for the

sake of simplicity, we consider the ambient DM halo to be non-responsive and therefore ignore the indirect effect of the

halo response on disk oscillations. We leave the inclusion of these two effects in the computation of the disk response

for future work.

The spatio-temporal nature of the perturbing potential dictates the disk response. In this paper we explore two dif-

ferent types of perturbation to which realistic disc galaxies can be exposed, and which are thus of general astrophysical

interest. The first is an in-plane spiral/bar perturbation with a vertical structure, either formed as a consequence of

secular evolution, or triggered by an external perturbation. We will consider both short-lived (transient) and persistent

spirals. The second type of perturbation that we consider is that due to an encounter with a massive object, e.g., a

satellite galaxy or DM subhalo.

3. DISK RESPONSE TO SPIRAL ARMS AND BARS

We model the potential of a spiral arm perturbation as one with a vertical profile and a sinusoidal variation along

radial and azimuthal directions,

ΦP(R,ϕ, z) = −2πGΣP

kR
[αMo(t)Fo(z) + Me(t)Fe(z)]

∑
mϕ=0,2

sin [kRR + mϕ (ϕ− ΩPt)] . (23)

Here ΩP is the pattern speed and kR is the horizontal wave number of the spiral perturbation. The long wavelength

limit, kR → 0, corresponds to a bar. We consider the in-plane part of ΦP to be a combination of an axisymmetric

(mϕ = 0) and a 2-armed spiral mode (mϕ = 2), and the vertical part to be a combination of anti-symmetric/odd

and symmetric/even perturbations respectively denoted by Fo and Fe, that differ by the ratio α and are modulated

by growth functions, Mo(t) and Me(t), that capture the growth and/or decay of the spiral strength over time. We

consider the following two functional forms for Mj(t) (where the subscript j = o or e):

Mj(t) =

 1√
π

exp
[
−ω2

j t
2
]
, Transient spiral/bar

exp [γjt] + (1 − exp [γjt]) Θ(t), Persistent spiral/bar.
(24)

The first option describes a transient spiral/bar that grows and decays like a Gaussian pulse with a characteristic life-

time τPj ∼ 1/ωj . The second form describes a persistent spiral perturbation that grows exponentially on a timescale

τGj ∼ 1/γj and then saturates to a constant amplitude. We shall see shortly that these two kinds of spiral perturbations

perturb the disk in very different ways.

The vertical part of the perturbation consists of an anti-symmetric function, Fo(z), and a symmetric function, Fe(z),

which, for the sake of simplicity, we take to be the following trigonometric functions:

Fo(z) = sin
(
k(o)z z

)
,

Fe(z) = cos
(
k(e)z z

)
. (25)

Here k
(o)
z and k

(e)
z denote the vertical wave-numbers of the anti-symmetric and symmetric perturbations, respectively.

Since the above functions form a complete Fourier basis in z, any (vertical) perturber profile can be expressed as a

linear superposition of Fo and Fe.

To compute the disk response, we need to compute the Fourier coefficients of the perturbing potential, Φnlm, which

can be obtained by taking the Fourier transform of ΦP given in Equation (23) with respect to the angles, wR, wϕ and

wz. As detailed in Appendix A this yields:

Φnlm (I, t) = −2πGΣP

kR

 ∑
mϕ=0,2,−2

δm,mϕ

 sgn(m) exp [i sgn(m)kRRc(Iϕ)]

2i
Jl

(
kR

√
2IR
κ

)

×
[
αMo(t)Φ(o)

n (Iz) + Me(t)Φ
(e)
n (Iz)

]
exp [−imΩPt], (26)
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Figure 1: MW disk response to transient bars/2-armed spirals with Gaussian temporal modulation: Left panel shows

the amplitude of the disk response, f1,nlm/f0, in the Solar neighborhood, computed using equations (29) and (32) in

presence of an ambient DM halo, as a function of the pulse frequency, ωj , where the subscript j = o and e for vertically

anti-symmetric (odd n) and symmetric (even n) perturbations. Solid (dashed) lines indicate the n = 1 bending (n = 2

breathing) modes and different colors denote (l,m) = (0,−2), (0, 0) and (0, 2) respectively. Note that the response

peaks at intermediate values of ωj , which is different for different modes, and is suppressed like a power law in the

impulsive (large ωj) limit and super-exponentially in the adiabatic (small ωj) limit. Right panel shows the breathing-

to-bending ratio, f1,200/f1,100, as a function of ωe and ωo, the pulse frequencies of the bending and breathing mode

perturbations respectively. The dashed, solid, dot-dashed and dotted contours correspond to breathing-to-bending

ratios of 0.1, 1, 5 and 10 respectively. The breathing-to-bending ratio rises and falls with increasing ωe at fixed ωo,

while the reverse occurs with increasing ωo at fixed ωe, leading to a saddle point at (ωe, ωo) ≈ (9, 7).

where Jl is the lth order Bessel function of the first kind and

sgn(m) =

1, m ≥ 0,

−1, m < 0.
(27)

The functions Φ
(o)
n (Iz) and Φ

(e)
n (Iz) are given by

Φ(o)
n (Iz) =

1

2π

∫ 2π

0

dwz sinnwz Fo

(
z, k(o)z

)
,

Φ(e)
n (Iz) =

1

2π

∫ 2π

0

dwz cosnwz Fe

(
z, k(e)z

)
. (28)

3.1. Computing the disk response

The expression for the disk response to bars or spiral arms can be obtained by substituting the Fourier coefficient

of the perturber potential given in Equation (26) in Equation (22) and performing the τ integration with the initial

time, ti → −∞. This yields

f1 (w, I, t) = − 2i

πσ2
R

1√
2πhzσz

exp

[
−κIR

σ2
R

]
exp

[
−Ez(Iz)

σ2
z

]
×

∞∑
n,l,m=−∞

[(
nΩz

σ2
z

+
lκ

σ2
R

)(
ΩϕΣ

κ

)
−m

d

dLz

(
ΩϕΣ

κ

)] [
αΨ

(o)
nlm P(o)

nlm(t) + Ψ
(e)
nlm P(e)

nlm(t)
]

exp [i (nwz + lwR + mwϕ)],

(29)
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where Ψ
(o)
nlm and Ψ

(e)
nlm respectively denote the time-independent parts of the odd and even terms in the expression for

Φnlm. The temporal modulation and oscillation terms of ΦP are integrated over τ to yield

P(j)
nlm(t) = exp [−iΩP t]

∫ ∞

0

dτ exp [−iΩres τ ]Mj(t− τ) (30)

with the resonance frequency, Ωres, given by

Ωres = nΩz + lκ + m(Ωϕ − ΩP). (31)

3.1.1. Transient spirals and bars

First we consider the case of transient spiral arm or bar perturbations that grow and decay in strength over time,

i.e., the temporal modulation Mj(t) is given by the first of equations (24). In this case,

P(j)
nlm(t) =

1

2ωj
exp

[
−Ω2

res

4ω2
j

] [
1 + erf

(
ωjt− i

Ωres

2ωj

)]
exp [−i(nΩz + lκ + mΩϕ)t]

t→∞−−−→ 1

ωj
exp

[
−Ω2

res

4ω2
j

]
exp [−i(nΩz + lκ + mΩϕ)t]. (32)

The left-hand panel of Fig. 1 plots the disk response to transient spiral/bar perturbations as a function of the

modulation/pulse frequency, ωj (j = o and e for bending and breathing modes respectively), for different modes

indicated in different colors. Solid and dashed lines correspond to the n = 1 bending modes and the n = 2 breathing

modes, respectively. We adopt ΣP = 5.5M⊙ pc−2, ΩP = 12 kms−1 kpc−1, k
(o)
z = k

(e)
z = 1kpc, and kR = 10kpc. We set

α = 1, implying equal maximum strengths for the bending and breathing modes. As evident from this figure, and also

from equation (32), the long-term strength of the disk response (after the initial transients have died out like e−ω2
j t

2

)

scales as ∼ 1/ωj in the impulsive (large ωj) limit, but is super-exponentially suppressed (∼ exp
[
−Ω2

res/4ω2
j

]
) in the

adiabatic (small ωj) limit, except at the resonances, Ωres = 0, for which the response scales as ∼ 1/ωj throughout and

becomes non-linear in the adiabatic regime. The adiabatic suppression scales differently with ωj for other functional

forms of Mj(t), e.g., for Mj(t) = 1/
√

1 + ω2
j t

2 the response strength is exponentially suppressed (∼ exp [−Ωres/ωj ]).

The sinusoidal factor, exp [−i(nΩz + lκ + mΩϕ)t], in P(j)
nlm(t) describes the oscillations of stars with three different

frequencies, Ωz, κ and Ωϕ, along the vertical, radial and azimuthal directions, respectively. Due to the dependence

of these frequencies on the actions, that of Ωz on Iz and of κ and Ωϕ on Iϕ = Lz, the response eventually phase

mixes away. This manifests as phase spirals in the Iz coswz − Iz sinwz and Iϕ cosϕ− Iϕ sinϕ phase-spaces, which are

proxies for the z − vz and ϕ − ϕ̇ phase-spaces, respectively. As shown in Paper I, n = 1 bending modes involve a

dipolar perturbation in the vertical phase-space (Iz coswz − Iz sinwz) distribution immediately after the perturbing

pulse reaches its maximum strength. This dipolar distortion is subsequently wound up into a one-armed phase spiral

since Ωz is a function of Iz. Breathing modes, on the other hand, involve an initial quadrupolar perturbation in the

phase-space distribution which is subsequently wrapped up into a two-armed phase spiral. Since Ωz, Ωϕ and ΩR all

depend on Lz, the amplitude of the Iz coswz − Iz sinwz phase spiral damps out over time due to mixing between stars

with different Lz, typically as ∼ 1/t. This explains why the density-contrast of the Gaia phase spiral is enhanced

upon color-coding by vϕ or, equivalently, Lz (Antoja et al. 2018; Bland-Hawthorn et al. 2019). Radial phase mixing

is also present, but is typically much weaker because none of the frequencies depend on IR under the radial epicyclic

approximation and only mildly depend on IR without it. Hence, due to ordered motion, the phase spiral in a realistic

disk galaxy damps out at a much slower rate than the lateral mixing damping (temporally Gaussian for laterally plane

wave perturbation) in the isothermal slab case considered in Paper I, which arises from the unconstrained lateral

velocities of the stars.

It is worth emphasizing that not all frequencies undergo phase mixing. In fact the resonant frequencies, for which

Ωres = nΩz + lκ + m(Ωϕ − ΩP) = 0, (33)

do not phase mix away. Hence, the near-resonant parts of phase-space undergo gradual phase mixing. Moreover, as

manifest from the adiabatic suppression factor, exp[−Ω2
res/4ω2

0 ], the near-resonant modes with Ωres ≪ 2ω0 have much

larger amplitude than those with Ωres ≫ 2ω0 that are far from resonance. Therefore the long-term disk response
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consists of stars in (near) resonance with the perturbing bar or spiral arm. Most of the strong resonances are confined

to the disk-plane, including the co-rotation resonance (n, l,m) = (0, 0,m), the Lindblad resonances (0,±1,±2), the

ultraharmonic resonances (0,±1,±4), and so on. For thin disks with hz ≪ hR , the vertical degrees of freedom are

generally not in resonance with the radial or azimuthal ones since Ωz is much larger than Ωϕ or κ. Hence the vertical

oscillation modes (n ̸= 0) such as the n = 1 bending or n = 2 breathing modes undergo phase mixing and give rise to

phase spirals.

The excitability of the bending and breathing modes is dictated by the perturbation timescale, or more precisely by

the ratio of the pulse frequency, ωj , and the resonant frequency, Ωres. The right panel of Fig. 1 shows the breathing-

to-bending ratio, f1,200/f1,100, as a function of ωe and ωo, with blue (yellow) shades indicating low (high) values. In

general, the breathing-to-bending ratio rises steeply and falls gradually with ωe at fixed ωo while the trend is reversed

as a function of ωo at fixed ωe, resulting in a saddle point at (ωe, ωo) ≈ (9, 7). This owes to the super-exponential

suppression in the adiabatic (ωj ≪ Ωres) limit and the power-law suppression in the impulsive (ωj ≫ Ωres) limit.

Along the ωo = ωe line, the bending (breathing) modes dominate in the adiabatic (impulsive) limit, as evident from

the left panel of Fig. 1. All this suggests that bending (breathing) modes dominate over breathing (bending) modes

when (i) the anti-symmetric (symmetric) perturbation is more impulsive, i.e., evolves faster than the symmetric (anti-

symmetric) one, and (ii) both symmetric and anti-symmetric perturbations occur over comparable timescales but

slower (faster) than the stellar vertical oscillation period.

3.1.2. Persistent spirals and bars

Next we consider perturbations caused by a persistent spiral arm or bar that grows exponentially until it saturates

at a constant strength. The corresponding temporal modulation Mj(t) is given by the second of equations (24). In

this case, as shown by equation (19) of Banik & van den Bosch (2021a),

P(j)
nlm(t) =

exp [γjt] exp [−imΩPt]

γj + iΩres
[1 − θ(t)] + i

[
γj exp [−i(nΩz + lκ + mΩϕ)t]

Ωres(γj + iΩres)
− exp [−imΩPt]

Ωres

]
θ(t). (34)

Up to t = 0 when the perturber amplitude stops growing, the response from all modes oscillates with the pattern

speed ΩP and grows hand in hand with the perturber. Subsequently, as the perturbation attains a steady strength,

the disk response undergoes temporary phase mixing due to the oscillations of stars at different frequencies, giving

rise to phase spirals. These transients, however, are quickly taken over by long term oscillations driven at the forcing

frequency ΩP.

For a slowly growing spiral/bar, i.e., in the ‘adiabatic growth’ limit (γ → 0), the entire disk oscillates at the driving

frequency, ΩP, i.e.,

P(j)
nlm(t)

γj→0−−−→ exp [−imΩPt]

[
πδ(Ωres) −

i

Ωres

]
. (35)

This has two major implications. First of all, since all stars, both resonant and non-resonant, are driven at the pattern

speed of the perturbing spiral/bar, transient phase mixing does not occur and thus no phase spiral arises. Secondly,

the response is dominated by the resonances, Ωres = 0. In fact the resonant response diverges, reflecting the failure

of (standard) linear perturbation theory near resonances. The adiabatic invariance of actions is partially broken near

these resonances, causing the stars to get trapped in librating near-resonant orbits. A proper treatment of the near-

resonant response can be performed by working with ‘slow’ and ‘fast’ action-angle variables (Tremaine & Weinberg

1984; Lichtenberg & Lieberman 1992; Chiba & Schönrich 2022; Banik & van den Bosch 2022; Hamilton et al. 2022),

which are uniquely defined for each resonance as linear combinations of the original action-angle variables. The fast

actions remain nearly invariant while the fast angles oscillate with periods comparable to the unperturbed orbital

periods of stars. The slow action-angle variables, on the other hand, undergo large amplitude oscillations about their

resonance values over a libration timescale that is typically much longer than the orbital periods. For example, at

co-rotation resonance (n = l = 0), angular momentum behaves as the slow action while the radial and vertical actions

behave as the fast ones.

Based on the above discussion, we infer that phase spirals can only be excited in the galactic disk by transient

spiral/bar perturbations whose amplitude changes over a timescale comparable to the vertical oscillation periods of

stars. Persistent spirals or bars rotating with a fixed pattern speed cannot give rise to phase spirals. Rather they

trigger stellar oscillations at the pattern speed itself, which manifests in the phase-space as a steadily rotating dipole
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or quadrupole depending on whether the n = 1 or 2 mode dominates the response. Thus, a phase spiral is necessarily

always triggered by a transient perturbation.

4. DISK RESPONSE TO SATELLITE ENCOUNTER

In addition to the spiral arm/bar perturbations considered above, we also consider disk perturbations triggered by

encounters with a satellite galaxy. For simplicity, we assume that the satellite is moving with uniform velocity vP
along a straight line, impacting the disk at a galactocentric distance Rd with an arbitrary orientation, specified by the

angles, θP and ϕP, which are respectively defined as the angles between vP and the z-axis, and between the projection

of vP on the mid-plane and the x-axis (see Fig. 2). Thus the position vector of the satellite with respect to the galactic

center can be written as

rP = (Rd + vP sin θP cosϕP t) x̂ + vP sin θP sinϕP t ŷ + vP cos θP t ẑ, (36)

while that of a star is given by

r = R(cosϕ x̂ + sinϕ ŷ) + z ẑ. (37)

We consider the satellite to be a Plummer sphere of mass MP and size ε, such that its gravitational potential at

location r is given by

ΦP = − GMP√
|r− rP|2 + ε2

. (38)

In order to compute the disk response to this external perturbation, we need to compute its Fourier coefficients,

which is challenging. Rather, we first evaluate the τ -integral in Equation (22), setting ti → −∞, and then compute

the Fourier transform of the result, as worked out in Appendix B.1. This yields

f1 (w, I, t) = − 2i

πσ2
R

1√
2πhzσz

exp

[
−κIR

σ2
R

]
exp

[
−Ez(Iz)

σ2
z

]
Θ(Lz)

×
∞∑

n,l,m=−∞

[(
nΩz

σ2
z

+
lκ

σ2
R

)(
ΩϕΣ

κ

)
−m

d

dLz

(
ΩϕΣ

κ

)]
Inlm(I, t) exp [i (nwz + lwR + mwϕ)], (39)

where Inlm can be approximated for small IR (this is justified since we adopt radial epicyclic approximation in this

paper) as

Inlm(I, t) ≈ −2GMP

vP
exp [−iΩt] × exp

[
−i

Ω sin θP cosϕP

vP
Rd

]
× 1

(2π)
2

∫ 2π

0

dwz exp [−inwz] exp

[
i
Ω cos θP

vP
z

] ∫ 2π

0

dϕ exp [−imϕ] exp

[
i
Ω sin θP cos (ϕ− ϕP)

vP
Rc

]
× Jl

(
Ω sin θP

vP

√
2IR
κ

cos (ϕ− ϕP)

)
K0i

(
Ω
√

R2
c + ε2

vP
,
vPt− Sc√
R2

c + ε2

)
, (40)

with Ω given by

Ω = nΩz + lκ + mΩϕ. (41)

Here Rc = R(Rc) and Sc = S(Rc) with R and S given by equation (B14), and K0i is given by equation (B16), which

asymptotes to the modified Bessel function of the second kind, K0

(
|Ω|
√
R2

c + ε2/vP

)
, in the large time limit. A more

precise expression for Inlm that is valid for higher values of IR is given by equation (B17) of Appendix B.1.

The expression for Inlm given in equation (40) exhibits several key features of the disk response to satellite encounters.

The exp [−iΩt] factor encodes the phase mixing of the response due to oscillations at different frequencies, giving rise
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Figure 2: Illustration of the geometry of a satellite galaxy

with mass MP impacting a disk galaxy with uniform ve-

locity vP along a straight line. The impact occurs at a

galactocentric distance Rd. The orientation of vP is spec-

ified by θP, the angle between vP and the z-axis, and ϕP,

the angle between the projection of vP on the mid-plane

and the x-axis.

to phase spirals. The exp [i (Ω cos θP/vP) z] and exp [i (Ω sin θP cos (ϕ− ϕP)/vP)Rc] factors respectively indicate that

the satellite induces wave-like perturbations in the disk with two characteristic wave-numbers: the vertical wave-

number, kz ≈ Ω cos θP/vP and the horizontal wave-number, kR ≈ Ω sin θP/vP. Therefore, the disk response will be

vertically (horizontally) stratified in case of a perpendicular (planar) impact of the satellite. As shown in Appendix B.2,

expressions (39)-(40), which are complicated to compute, yield the correct response in the impulsive limit of a satellite

having a face-on, perpendicular encounter through the center of the disk.

4.1. Asymptotic behaviour of the response

It is instructive to study the two extreme cases of encounter speed, the impulsive limit (large vP) and the adiabatic

limit (small vP). Using the asymptotic forms of Bessel functions, we obtain the following approximate asymptotic

behaviour of f1nlm:

f1nlm ∼ GMP

vP
×


1, vP → ∞

√
vP/Ωb exp [−Ωb/vP], vP → 0,

(42)

where b is the impact parameter of the encounter, given by

b = |Rd −Rc|
√

1 − sin2 θP cos2 ϕP. (43)

It is clear from these limits that the disk response is most pronounced for intermediate velocities, vP ∼ Ωb. For

impulsive encounters, the response is suppressed as a power law in vP, whereas in the adiabatic limit the response is

exponentially suppressed, except at resonances, Ω = nΩz + lκ + mΩϕ = 0. In this limit, far from the resonances, the
perturbation timescale, b/vP, is much larger than Ω−1, and the net response is washed away due to many oscillations

during the perturbation (i.e., the actions are adiabatically invariant), a phenomenon known as adiabatic shielding

(Weinberg 1994a,b; Gnedin & Ostriker 1999).

4.2. Response of the MW disk to satellites

The MW halo harbors several fairly massive satellite galaxies that perturbed the MW disk a few hundred Myr ago,

thus triggering phase spirals that might have survived till the present day. Here we use existing data on the phase-space

coordinates of the MW satellites to compute the disk response to their encounters with the MW stellar disk.

To compute the disk response to the MW satellites, we proceed as follows. As in Paper I, we adopt the galactocentric

coordinates and velocities computed and documented by Riley et al. (2019) (table A.2, see also Li et al. 2020) and

Vasiliev & Belokurov (2020) as initial conditions for the MW satellites. We then simulate their orbits in the combined

gravitational potential of the MW halo, disk plus bulge1 using a second order leap-frog integrator. For each individual

orbit, we record the times, tcross, and the galactocentric radii, Rd, corresponding to disk crossings. We also note

the corresponding impact velocities, vP =
√
v2z + v2R + v2ϕ, and the angles of impact, θP = cos−1 (vz/vP) and ϕP =

1 The bulge is modelled as a spherical Hernquist (1990) profile with mass Mb = 6.5× 109 M⊙ and scale radius rb = 0.6 kpc.
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MW satellite Mass f1,n=1/f0 tcross f1,n=1/f0 tcross f1,n=1/f0 tcross

name ( M⊙) ( Gyr) ( Gyr) ( Gyr)

Penultimate Penultimate Last Last Next Next

(1) (2) (3) (4) (5) (6) (7) (8)

Sagittarius 109 2.8 × 10−1 −1.01 4.9 × 10−8 −0.35 1.3 × 10−1 0.03

Hercules 7.1 × 106 8.4 × 10−8 −3.78 2.4 × 10−3 −0.5 2.3 × 10−3 3.18

Leo II 8.2 × 106 – −3.86 1.6 × 10−3 −1.78 3.1 × 10−3 2.31

Segue 2 5.5 × 105 6.2 × 10−4 −0.84 8.5 × 10−4 −0.25 6.3 × 10−5 0.28

LMC 1.4 × 1011 5.3 × 10−2 −7.63 – −2.67 2.3 × 10−2 0.11

SMC 6.5 × 109 2.9 × 10−5 −3.32 – −1.44 9 × 10−6 0.22

Draco I 2.2 × 107 – −2.46 1 × 10−4 −1.24 7 × 10−6 0.24

Bootes I 107 1.7 × 10−7 −1.67 3.8 × 10−5 −0.35 – 0.88

Willman I 4 × 105 1.5 × 10−8 −0.66 1.2 × 10−6 −0.21 9 × 10−6 0.41

Ursa Minor 2 × 107 – −2.28 1.8 × 10−5 −1.17 2.6 × 10−6 0.29

Ursa Major II 4.9 × 106 5.5 × 10−6 −2.12 2.6 × 10−6 −0.09 – 0.97

Coma Berenices I 1.2 × 106 8.8 × 10−7 −2.58 3.8 × 10−8 −0.25 – 0.71

Sculptor 3.1 × 107 – −2.74 3.2 × 10−8 −0.46 – 1.48

Table 1: Response of the MW disk for stars with Iz = hz⊙σz⊙ in the Solar neighborhood to encounters with satellites.

Columns (1) and (2) list the name and dynamical mass of each satellite. The latter is taken from the literature (Simon

& Geha 2007; Bekki & Stanimirović 2009;  Lokas 2009; Erkal et al. 2019; Vasiliev & Belokurov 2020), except for

Sagittarius for which we adopt a mass of 109 M⊙. Note that there is a discrepancy between its estimated mass of

∼ 4 × 108 M⊙ (Vasiliev & Belokurov 2020) and the mass required (109 − 1010 M⊙) to produce detectable phase spiral

signatures in N-body simulations (see for example Bennett et al. 2022). Columns (3) and (4) respectively denote the

bending mode response assuming our fiducial MW parameters and the penultimate disk-crossing time. Columns (5)

and (6) indicate the same for the last disk-crossing, while columns (7) and (8) show it for the next one. Only satellites

that induce a bending mode response, f1,n=1/f0 ≥ 10−8, in at least one of the three cases are shown. Any response

weaker than 10−8 is considered negligible and is indicated with a horizontal dash.

tan−1 (vϕ/vR). We substitute these quantities in equation (B17) and compute the disk response marginalized over

IR using equation (39). Results are summarized in Table 1. Fig. 3 plots the amplitude of the Solar neighborhood

(Rc(Lz) = 8kpc) bending mode response, f1,n=1/f0 (top panel), and breathing-to-bending ratio, f1,n=2/f1,n=1 (bottom

panel), as a function of tcross. Here we only show the responses for (l,m) = (0, 0) modes, and consider stars with

Iz = hz⊙σz⊙.

It is noteworthy that the responses in the realistic MW disk are ∼ 1 − 2 orders of magnitude larger than those

evaluated for the isothermal slab model shown in Fig. 7 of Paper I. This owes to the damping of the phase spiral

amplitude due to lateral mixing, which is more pronounced in the isothermal slab with unconstrained lateral velocities

than in the realistic disk with constrained, ordered motion. From the lower panel of Fig. 3 it is evident that, as in

the isothermal slab case, almost all satellites trigger a bending mode response in the Solar neighborhood, resulting in

a one-armed phase spiral in qualitative agreement with the Gaia snail. However, as is evident from the upper panel,

only five of the satellites trigger a detectable response in the disk, with f1,n=1/f0 > δ = 10−4 (see Appendix C of

Paper I for a derivation of this approximate detectability criterion for Gaia). The response to encounters with the

other satellites is weak either because they have too low mass or because the encounter with respect to the Sun is too

slow and adiabatically suppressed. Sgr excites the strongest response by far; its bending mode response, f1,n=1/f0,

is at least 1 − 2 orders of magnitude above that for any other satellite. Its penultimate disk crossing, about the

same time as its last pericentric passage ∼ 1 Gyr ago, triggered a strong response of f1,n=1/f0 ∼ 0.3 in the Solar

neighborhood. The response from its last disk crossing, which nearly coincides with its last apocentric passage about

350 Myr ago, triggered a very weak, adiabatically suppressed response that falls below the lower limit of Fig. 3. Its

next disk crossing in about 30 Myr is estimated to trigger a strong response with f1,n=1/f0 ∼ 0.1. Besides Sgr, the

satellites that excite a detectable response, f1,n=1/f0 > δ = 10−4 are Hercules, Segue 2, Leo II and the LMC. The

imminent crossing of LMC is estimated to trigger f1,n=1/f0 ∼ 2 × 10−2, which is an order of magnitude below Sgr.

Only for Iz/(hz⊙σz⊙) ≳ 4.5 (zmax ≳ 3.4hz⊙), the LMC response dominates over Sgr. This exercise therefore suggests
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Figure 3: MW disk response to satellite encounter: bending mode strength, f1,n=1/f0 (upper panel), and the

corresponding breathing vs bending ratio, f1,n=2/f1,n=1 (lower panel) for the (l,m) = (0, 0) modes, in the Solar

neighborhood for the MW satellites, as a function of the disk crossing time, tcross, in Gyr, where tcross = 0 marks

today. The previous two and the next impacts are shown. Here we consider Iz = hzσz⊙, with fiducial MW parameters,

and marginalize over IR. The effect of the (non-responsive) ambient DM halo on the stellar frequencies is taken into

account. In the upper panel, the region with bending mode response, f1,n=1/f0 < 10−4, has been grey-scaled, indicating

that the response from the satellites in this region is far too weak and adiabatic to be detected by Gaia. Note that

the response is dominated by that due to Sgr, followed by Hercules, Leo II, Segue 2 and the Large Magellanic Cloud

(LMC). Also note that the previous two and next impacts of all the satellites excite bending modes in the Solar

neighborhood.

that Sgr is the leading contender, among the MW satellites considered here, for triggering the Gaia snail in the Solar

neighborhood, in agreement with several previous studies (Antoja et al. 2018; Binney & Schönrich 2018; Laporte et al.

2018, 2019; Darling & Widrow 2019a; Bland-Hawthorn et al. 2019; Hunt et al. 2021; Bland-Hawthorn & Tepper-Garćıa

2021; Bennett et al. 2022).

4.3. Exploring parameter space

Having computed the MW disk response to its satellites, we now investigate the sensitivity of the response to

the various encounter parameters. In Fig. 4 we plot the amplitude of the Solar neighborhood response, f1,nlm/f0
(marginalized over IR), as a function of the impact velocity, vP (in units of the circular velocity at Rc = R⊙), for the

(n, l,m) = (1, 0, 0) bending and (n, l,m) = (2, 0, 0) breathing modes, shown in the left and right columns respectively.

The top, middle and bottom rows show the results for varying Iz, θP and ϕP respectively, assuming the fiducial

parameters to be those for Sgr (mass MP = 109 M⊙, scale radius ε = 1.6 kpc) during its penultimate disk crossing

(most relevant for the Gaia snail), i.e., impact radius Rd = 17 kpc, impact velocity vP = 340 km/s, and angles of

impact, θP = 21◦ and ϕP = 150◦. In Fig. 5 we plot the bending and breathing mode response amplitudes (in the Solar

neighborhood) as a function of vP for different (l,m) modes, with the fiducial parameters again corresponding to Sgr.

The left and right columns respectively indicate the n = 1 bending and n = 2 breathing modes, while the top and
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Figure 4: MW disk response to satellite encounter: each panel shows the behaviour of the disk response amplitude,

f1,n00/f0 (evaluated using equations [39] and [B17]) and marginalized over IR), as a function of the impact velocity,

vP, in the Solar neighborhood, i.e., Rc = R⊙ = 8 kpc, in presence of an ambient DM halo. The left and right

columns respectively indicate the response for the n = 1 bending and n = 2 breathing modes. The top, middle and

bottom rows show the same for different values of Iz (in units of hzσz⊙), θP and ϕP respectively as indicated, with

the fiducial parameters corresponding to Iz = hzσz⊙ and the parameters for Sgr impact, the response amplitude for

which is indicated by the red circle. Note that the response is suppressed as v−1
P in the impulsive (large vP) limit but

exponentially suppressed in the adiabatic (small vP) regime, and peaks at an intermediate velocity, vP ∼ 2−3 vcirc(R⊙).

The peak of the response shifts to smaller vP for larger Iz due to a dip in Ωz. The response is mildly dependent on
ϕP but is quite sensitive to θP; more planar encounters, i.e., increasing θP triggers stronger responses.
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Figure 5: MW disk response to satellite encounter: each panel shows the behaviour of the disk response amplitude,

f1,nlm/f0 (marginalized over IR), as a function of the impact velocity, vP, in the Solar neighborhood, in presence of an

ambient DM halo. Different lines correspond to different m modes as indicated. The top and bottom rows show the

response for l = 0 and 1 while the left and right columns indicate it for the n = 1 bending and n = 2 breathing modes.

The fiducial parameters correspond to Iz = hzσz⊙ and the parameters for Sgr impact, the response amplitudes for

which are indicated by the red circles in each panel. The response is dominated by the (n, l,m) = (1, 0,−2) mode or

the two-armed warp at small vP and the (2, 0,−2) mode or the two-armed spiral at large vP. Typically, the m = −2

and −1 responses dominate over m = 0, 1 and 2, while the l = 0 response is more pronounced than l = 1.

bottom rows correspond to l = 1 and l = 2 respectively. The different lines in each panel denote the responses for

m = −2,−1, 0, 1 and 2. Fig. 6 shows the ratio of the bending and breathing response amplitudes as a function of vP
for the dominant mode (l,m) = (0,−2). Different lines indicate breathing-to-bending ratios for different values of θP,

while the left and right columns respectively indicate the ratios observed at Rc = 8 and 12 kpc.

From Figs. 4 and 5 it is evident that, as shown in equation (42), the disk response is suppressed like a power law (∼
v−1
P ) in the high velocity/impulsive limit and exponentially (∼ exp [−Ωb/vP]) suppressed in the low velocity/adiabatic

limit. The response is the strongest for intermediate velocities, vP ∼ 2 − 3 vcirc( R⊙), where the time periods of

the vertical, radial and azimuthal oscillations of the stars are nearly commensurate with the encounter timescale,√
b2 + ε2/vP. The v−1

P and K0i factors in equation (40) conspire to provide the near-resonance condition for maximum

response,
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Figure 6: MW disk response to satellite encounter: breathing-to-bending ratio or the relative strength of the n = 2 and

n = 1 modes of disk response to a Sgr-like impact is plotted as a function of the impact velocity, vP, at Rc = R⊙ = 8kpc

and Rc = 1.5R⊙ = 12kpc shown in the left and right columns respectively, for the (l,m) = (0,−2) mode which typically

dominates the response. Different lines correspond to different values of θP as indicated. We consider Iz = hzσz⊙ and

the fiducial parameters to correspond to those for Sgr encounter, for which the breathing-to-bending ratio is denoted by

the red circle. Bending modes dominate over breathing modes at small vP and vice versa at large vP. Breathing modes

are relatively more pronounced than bending modes in the outer disk, closer to the Sgr impact radius, Rd = 17 kpc.

More planar (perpendicular) encounters trigger larger breathing-to-bending ratios farther away from (closer to) the

impact radius.

nΩz + lκ + mΩϕ ≈ 0.6 vP√
b2 + ε2

, (44)

where b is the impact parameter of the encounter, given by equation (43). From the top panels of Fig. 4, it is clear that

the peak response shifts to smaller vP with increasing Iz since the corresponding vertical frequency, Ωz, gets smaller

making the encounter more impulsive for larger actions. The middle and bottom panels show that the response depends

strongly on the polar angle of the encounter, θP, but very mildly on the azimuthal angle, ϕP. Moreover, the middle

panels indicate that more planar encounters (larger θP) induce stronger responses.

The in-plane structure of the disk response depends on the relative contribution of the different (l,m) modes. From

Fig. 5 it is evident that a typical Sgr-like encounter predominantly excites (l,m) = (0,−1) and (l,m) = (0,−2) in the

Solar neighborhood. The dominant mode for slower encounters is (n, l,m) = (1, 0,−2) while that for faster ones is

(n, l,m) = (2, 0,−2). Since f1,nlm/f0 ≳ 1 in these cases, the response to Sgr impact is in fact non-linear in the Solar

neighborhood. Either way, a satellite encounter is typically found to excite strong m = −2 modes, i.e., 2-armed warps

(n = 1) and spirals (n = 2). This owes its origin to a quadrupolar tidal distortion of the disk by the satellite, which

manifests as a stretching of the disk in the direction of the impact and a squashing perpendicular to it.

Fig. 6 elucidates that the bending (breathing) mode response dominates for slower (faster) encounters, i.e., smaller

(larger) vP, and at guiding radii far from (close to) the impact radius, Rd. More planar impacts trigger larger

breathing-to-bending ratios farther away from the impact radius while this trend reverses closer to it. This is because

more planar (perpendicular) encounters cause more vertically symmetric perturbations farther away from (closer to)

the impact radius. The predominance of bending modes for low vP encounters while that of breathing modes for high

vP ones has been observed by Widrow et al. (2014) and Hunt et al. (2021) in their N-body simulations of satellite-disk

encounters. As demonstrated by Widrow et al. (2014), slower encounters provide energy to the stars near one of the

apocenters of vertical oscillations while drain energy from those near the other apocenter, thereby driving bending wave

perturbations that are asymmetric about the mid-plane. On the other hand, fast satellite passages are impulsive and

impart energy to the stars near both the apocenters, thus triggering symmetric breathing waves. The predominance of

breathing (bending) modes closer to (farther away from) the impact radius is qualitatively similar to the observation

by Hunt et al. (2021) in their simulations of MW-Sgr encounter that the outer part of the MW disk which is closer
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Figure 7: Impact of DM halo on vertical phase mixing: the panels from left to right respectively indicate the vertical

frequency, Ωz (units of σz/hz), the vertical phase mixing timescale, τϕ (given by equation [46]), and the wz = 0 cuts

of the phase spirals shown in Fig. 8 as a function of the vertical action, Iz (units of hzσz). The solid and dashed red

lines denote the cases with and without a halo for Rc = R⊙ = 8 kpc while the dot-dashed and dotted blue lines show

the same for Rc = 12 kpc. The vertical dashed line indicates roughly the maximum Iz for which a phase spiral is

discernible in the Gaia data. Note that phase mixing occurs the fastest for Iz ∼ 1 and that the inner disk phase mixes

faster than the outer disk. Also note that the presence of a DM halo increases Ωz as well as τϕ, leading to slower phase

mixing and therefore slower wrapping of the phase spiral. This effect is more pronounced in the outer disk.

to the impact radius shows a preponderance of two-armed phase spirals or breathing modes. This can be understood

within the framework of our formalism by noting that the impact parameter, b, and therefore the encounter timescale

∼
√
b2 + ε2/vP decreases with increasing proximity to the point of impact; hence the impact is faster than the vertical

oscillations of stars near the point of impact, driving stronger breathing mode perturbations.

5. PHASE SPIRALS AS PROBES OF THE GALACTIC POTENTIAL

Thus far we mainly focused on how the nature of the perturbation dictates the vertical (i.e., bending and breathing

modes) as well as the in-plane (various (l,m) modes) structure of the disk response. However, the detailed structure, in

particular the winding, of the phase spiral not only depends on the triggering agent but also holds crucial information

about the underlying potential in which the stars move, and can thus be used to constrain the potential of the combined

disk plus halo system (see also Widmark et al. 2022a,b).

The winding of a phase spiral can be characterized by the pitch-angle, ϕI, along the ridge of maximum density. It

is defined as the angle between the azimuthal direction and the tangent to the line of constant density (Binney &

Tremaine 1987). It is related to the local dependence of the vertical frequency on the vertical action according to:

ϕI = cot−1

[∣∣∣∣Iz dΩz

dIz

∣∣∣∣ t] = cot−1

[∣∣∣∣ dΩz

d ln Iz

∣∣∣∣ t]. (45)

Following a perturbation, the pitch angle increases with time, asymptoting towards zero, as the spiral winds up as a

consequence of the ongoing phase mixing. Based on the above expression for ϕI, we can define the following timescale

of phase mixing,

τϕ =

∣∣∣∣d ln Iz
dΩz

∣∣∣∣ . (46)

This timescale, which determines the rate of winding of the spiral, is a function of both the guiding radius, Rc, and

the action, Iz, and is ultimately dictated by the (unperturbed) potential of the disk+halo system, which sets dΩz/dIz.

Hence, the detailed shape of the phase spiral at a given location in the disk is sensitive to the local, relative strengths

of the disk and halo, thereby opening up interesting avenues for constraining the detailed potential of the MW by

examining phase spirals throughout the disk.

The left panel of Fig. 7 plots the vertical frequency, Ωz, as a function of the logarithm of the action, Iz, for the MW

potential with and without the halo and at guiding radii, Rc = 8 (red) and 12 kpc (blue). The middle panel shows the

behaviour of the corresponding phase mixing timescale, τϕ, as a function of Iz. Fig. 8 shows the (n, l,m) = (1, 0, 0)
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Figure 8: Vertical phase mixing: one-armed phase spiral corresponding to n = 1 bending mode excited by the

encounter with Sgr for MW disk+halo and MW disk models (columns) at Rc = 8 kpc and 12 kpc (rows). The presence

of DM halo slows down the rate of phase mixing, leading to more loosely wrapped phase spirals. phase mixing occurs

more rapidly in the inner disk than in the outer disk.

phase spirals 400 Myr after the penultimate disk crossing of Sagittarius, color coded by the MW disk response, f1,100,

with blue (red) indicating higher (lower) phase-space density. Results for the same four cases are shown as indicated.

Finally, the right panel of Fig. 7 shows the wz = 0 cuts of the normalized response, f1,100/f0, as a function of Iz, for

the four different phase spirals. The vertical frequency, Ωz, is a decreasing function of ln Iz in all cases, indicating

that stars with larger actions (i.e., larger vertical excursion amplitudes) oscillate slower. Note that |dΩz/d ln Iz| is an

increasing (decreasing) function of Iz at small (large) Iz, reaching a maximum at intermediate Iz. Consequently, the

phase mixing timescale, τϕ, which is the inverse of |dΩz/d ln Iz|, attains its minimum at Iz/(hzσz) ∼ 1. Thus phase
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Figure 9: Unwinding the phase spiral and constraining the MW potential: Left panel plots the evolution of the

cotangent of pitch-angle, ϕI, of a one-armed phase spiral as a function of time for different Iz, assuming that phase

mixing occurs under the MW disk plus halo potential. Bluer (redder) colors indicate smaller (larger) Iz. Right panel

plots the back-evolution of cot (ϕI) from the present day measured values (0.4 Gyr since the perturbation occurred)

assuming only the MW disk potential. Upon ignoring the halo and therefore assuming a ‘wrong’ potential, the different

Iz lines intersect the cot (ϕI) = 0 axis at different times, indicating the phase spiral is not perfectly unwound. One can

therefore constrain the MW potential by iterating over the parameter space and trying to minimize the spread, SI, in

the intersection times.

mixing occurs the fastest at intermediate actions and slows down at larger actions, causing the spiral to become more

loosely wound farther away from its origin.

The rate of phase mixing is different in the four different cases. Closer to the galactic center where the potential is

deeper and steeper, stars have a larger range of Ωz, or in other words Ωz falls off more steeply with ln Iz in the inner

disk than in the outskirts. This leads to faster phase mixing and therefore a much more tightly wound phase spiral in

the inner disk (left panels of Fig. 8) as opposed to the outer disk (right panels). The difference in the phase mixing

rates is also manifest in the wz = 0 response shown in the right panel of Fig. 7; note the longer oscillation wavelengths

of the blue lines (outer disk) as opposed to the red lines (inner disk). Hence, the inner part of the disk equilibrates

much faster than the outer part.

The presence of a DM halo deepens the potential well and thus boosts the oscillation frequencies. But the halo also

steepens the potential such that the range of frequencies is reduced, i.e., Ωz falls off more mildly with ln Iz than in the

disk only case. This leads to slower phase mixing and therefore more loosely wound phase spirals in presence of the

halo (upper panels of Fig. 8) than in its absence (lower panels), the effect being more pronounced in the outer (right

panels) than in the inner (left panels) disk. Equivalently, the wz = 0 response in the right panel of Fig. 7 shows longer

wavelength wiggles in presence of the halo.

The above sensitivity of the phase mixing timescale to the detailed galaxy potential can be used to constrain it. A

proof of concept for this is demonstrated in Fig. 9. In the left panel we show how the cotangent of the pitch angle for

a one-armed phase spiral in the Solar neighborhood changes as a function of time (equation [45]) due to the ongoing

phase mixing of stars moving in the combined potential of the disk and halo of the MW. Different colors correspond

to different vertical actions, Iz, with bluer (redder) colors indicating smaller (larger) Iz. Since τϕ is a function of Iz,

different actions undergo phase mixing at different rates indicated by the different slopes of the straight lines. Let

us suppose that 400 Myr after the perturbation, an observer observes the phase spiral, i.e., measures the pitch angle,

ϕI(Iz) along the ridge of maximum density. They would now try to constrain the MW potential as well as the time

elapsed since the perturbation by unwinding the phase spiral. This can be accomplished by making a prior guess of

the potential and back-integrating the orbits of stars in this potential, i.e., back-evolving the pitch angle towards π/2

or cotϕI towards zero. Only for the correct potential the pitch angle would return to π/2 for all actions at a single
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point of time in the past, or in other words the phase spiral would be perfectly unwound. In the right panel of Fig. 9

we demonstrate the result of this unwinding exercise for a slightly incorrect assumption of the MW potential where

the halo is ignored. For this potential cotϕI for different actions intersect the zero-line at different times. Therefore,

the potential can be constrained by varying its parameters and trying to minimize the spread, SI, of the intersection

times of cotϕI(Iz), as indicated. In future work we intend to implement this technique to unwind Gaia DR3 phase

spirals at various locations of the MW disk and constrain the global potential and matter distribution of the MW.

6. CONCLUSION

In this paper, we have developed a linear perturbative formalism to analyze the response of a realistic disk galaxy

(characterized by a pseudo-isothermal DF) embedded in an ambient spherical DM halo (modelled by an NFW profile)

to perturbations of diverse spatiotemporal nature: bars, spiral arms, and encounters with satellite galaxies. Adopting

the radial epicyclic approximation, we perturb the CBE up to linear order (in action-angle space) in presence of a

perturbing potential, ΦP, to compute the post-perturbation linear response in the DF, f1, which shows oscillations at

the unperturbed frequencies. Without self-gravity to reinforce the response, the oscillations phase mix away due to

an intrinsic spread in the frequencies of stars, giving rise to spiral features in the phase-space distribution known as

phase spirals. Depending on the timescale of ΦP, different modes of disk oscillation, corresponding to different phase

spiral structures, are excited. We summarize our conclusions as follows:

• Following an impulsive perturbation, the (n, l,m) mode of the disk response consists of stars oscillating with

frequencies, nΩz, lΩr ≈ lκ and mΩϕ, along vertical, radial and azimuthal directions respectively. Since the

frequencies depend on the actions, primarily on the vertical action Iz and the angular momentum Lz, the

response phase mixes away, spawning phase spirals. The dominant modes of vertical oscillation are the anti-

symmetric bending (n = 1) and symmetric breathing (n = 2) modes, which induce initial dipolar and quadrupolar

perturbations in the z − vz or Iz coswz − Iz sinwz phase-space that get phase-wrapped over time into one- and

two-armed phase spirals respectively due to the variation of Ωz with Iz.

• Since Ωz and Ωϕ both depend on Lz, the amplitude of the Iz coswz − Iz sinwz phase spiral damps away over

time, typically as ∼ 1/t. Therefore, in a realistic disk with ordered motion, phase spirals damp out much slower

due to lateral mixing than in the isothermal slab with unconstrained lateral velocities discussed in Paper I.

• The response to a bar or spiral arm with a fixed pattern speed, ΩP, is dominated by the near-resonant stars

(Ωres = nΩz + lκ + m(Ωϕ − ΩP) ≈ 0), especially in the adiabatic regime (slowly evolving perturber amplitude).

The near-resonant response undergoes gradual phase mixing. Most of the strong resonances are confined to the

disk-plane, such as the co-rotation (n = l = 0) and Lindblad (n = 0, l = ±1,m = ±2) resonances. For a transient

bar or spiral arm whose amplitude varies over time as ∼ exp
[
−ω2

0t
2
]
, the response from the non-resonant stars

(Ωres far from ω0) undergoes phase mixing and is power-law (super-exponentially) suppressed in the impulsive

(adiabatic) or ω0 ≫ Ωres (ω0 ≪ Ωres) limit, reaching a maximum strength when Ωres ∼ ω0.

• For a thin disk, since Ωz is very different from Ωϕ and κ, the vertical modes (n ̸= 0) are generally not resonant

with the radial and azimuthal ones and thus undergo phase mixing. The strength of a vertical mode primarily

depends on the nature of the perturbing potential, most importantly its timescale. Slower pulses trigger stronger

bending (n = 1) modes while faster pulses excite more pronounced breathing (n = 2) modes. Therefore, a

transient bar or spiral arm with amplitude ∼ exp
[
−ω2

0t
2
]

triggers a bending (breathing) mode when the pulse-

frequency, ω0, is smaller (larger) than Ωz. The response to very slow perturbations (ω0 ≪ Ωz) is however heavily

suppressed (adiabatic shielding).

• For a persistent bar or spiral arm with a fixed pattern speed, ΩP, that grows and saturates over time, the

phase spiral is a transient feature that is quickly taken over by coherent oscillations at the driving frequency,

ΩP, which manifest in the phase-space as a steadily rotating dipole (quadrupole) for the bending (breathing)

mode. Therefore, a transient (pulse-like) perturbation, such as a bar or spiral arm whose amplitude varies over

a timescale comparable to the vertical oscillation period, Tz ∼ hz/σz, is essential for the formation of a phase

spiral.

• The above analysis suggests that if the recently discovered two-armed Gaia phase spiral (breathing mode) in

the inner disk of the MW was indeed induced by spiral arms as suggested by Hunt et al. (2022) using N-body
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simulations, the spiral arm was probably a transient one with a predominantly symmetric vertical profile whose

amplitude varied over a timescale shorter than the vertical oscillation period.

• We for the first time compute the full response of a disk galaxy embedded in a DM halo to a satellite galaxy

(modelled as a Plummer perturber with mass MP and size ε) moving along a straight line orbit with a uniform

velocity, vP, and impacting the disk at a galactocentric distance, Rd, at angles θP and ϕP (see Fig. 2). As an

astrophysical application of this model we compute the response of our MW disk to several satellite galaxies in

the halo. Our analysis shows that the Solar neighborhood response of the MW disk is dominated by Sgr, followed

by the LMC, Hercules and Leo II. This makes Sgr the leading contender among the MW satellites for triggering

the Gaia snail near the Solar radius.

• The amplitude of the response (at a fixed guiding radius Rc) to satellite encounters for all modes scales as v−1
P in

the impulsive (large vP) limit, but is exponentially suppressed in the adiabatic (small vP) limit, a phenomenon

known as adiabatic shielding. The resonant modes with nΩz + lκ + mΩϕ = 0 are not suppressed but rather

become non-linear in the adiabatic regime. The peak response of a mode (with nΩz + lκ+mΩϕ ̸= 0) is achieved

at intermediate velocities for which the encounter timescale is commensurate with the oscillation periods of the

stars, i.e., the near-resonance condition,

nΩz + lκ + mΩϕ ≈ 0.6 vP√
b2 + ε2

, (47)

is satisfied, with b ≈ |Rd −Rc|
√

1 − sin2 θP cos2 ϕP the impact parameter.

• The response strength of a mode depends primarily on three parameters of satellite impact: 1. impact velocity

vP, 2. polar angle of impact θP, and 3. position on the disk relative to the point of impact. Slower, i.e., small

vP (faster, i.e., large vP) encounters excite stronger n = 1 bending (n = 2 breathing) modes. More planar

(θP ≈ π/2) encounters result in stronger breathing-to-bending ratio farther away from the impact radius while

this trend gets reversed closer to it. In general, breathing modes get stronger than bending modes closer to

the impact radius, in agreement with the N-body simulations of MW-Sgr encounter performed by Hunt et al.

(2021). Since the impact velocities of the MW satellites are not much different from the local circular velocity,

the decisive factor for breathing vs bending modes is not the velocity but rather the distance of the observation

radius from the impact radius.

• The m = −2 modes generally dominate the response for slower satellite encounters, e.g., that of Sgr with respect

to the Solar neighborhood, due to the tidal distortion of the disk by the satellite. The in-plane spatial structure

of the disk response therefore generally resembles a two-armed warp (n = 1) or spiral (n = 2).

• We investigate the impact of the MW potential on the shape of the phase spiral. We find that phase mixing

occurs slower and thus phase spirals are more loosely bound farther out in the disk and in presence of a DM

halo. We provide a proof-of-concept to use the tightness of the phase spiral, characterized by its pitch-angle,

to constrain the MW potential, Φ0(R, z). In future work we intend to apply this spiral unwinding technique to

constrain Φ0(R, z) using the Gaia data at various locations across the disk.

This paper is centered around the analysis of the phase mixing component (phase spirals) of the ‘direct’ disk response

to various perturbations such as bars, spiral arms and satellite galaxies. However this leaves out some other potentially

important features of the disk response. Firstly, we consider the ambient DM halo to non-responsive. In reality, the

DM halo would also be perturbed, for example by an impacting satellite, and this halo response, which can be enhanced

by self-gravity, can indirectly perturb the disk. Secondly, we have neglected the self-gravity of the disk response in this

paper. As discussed in Paper I, the dominant effect of self-gravity would be coherent normal mode oscillations (Mathur

1990; Weinberg 1991; Darling & Widrow 2019b) of the disk which in linear theory are decoupled from the phase spirals.

Recent developments (Dootson & Magorrian 2022) have shed some light into the self-gravitating response of razor-thin

disks to bar perturbations. However, formulating a self-gravitating response theory for inhomogeneous thick disks and

general perturber models (bars, spiral arms, satellite galaxies, etc.) is still an unsolved problem. We intend to include

the effects of halo response and self-gravity on disk perturbations in future work.
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APPENDIX

A. FOURIER COEFFICIENTS OF SPIRAL ARM OR BAR PERTURBING POTENTIAL

An essential ingredient of the disk response to spiral arm or bar perturbations is the Fourier component of the

perturber potential, Φnlm. This can be computed as follows:

Φnlm(I, t) =
1

(2π)
3

∫ 2π

0

dwz

∫ 2π

0

dwR

∫ 2π

0

dwϕ exp [−i(nwz + lwR + mwϕ)] ΦP (r, t) . (A1)

To evaluate this first we need to calculate r = (z,R, ϕ) as a function of (w, I) = (wz, wϕ, wR, I) where Iϕ = Lz, the

angular momentum. Under the epicyclic approximation, wϕ ≈ ϕ, and R can be expressed as a sum of the guiding

radius and an oscillating epicyclic term, i.e.,

R ≈ Rc(Lz) +

√
2IR
κ

sinwR. (A2)

The vertical distance z from the mid-plane is related to Rc(Lz) and (wz, Iz), according to

wz = Ωz(Rc, Iz)

∫ z

0

dz′√
2 [Ez(Rc, Iz) − Φz(Rc, z′)]

, (A3)

where Ωz(Rc, Iz) = 2π/Tz(Rc, Iz), with Tz(Rc, Iz) given by Equation (20). The above equation can be numerically

inverted to obtain z(Rc, wz, Iz).

Upon substituting the above expressions for R, ϕ and z in terms of (w, I) in the expression for ΦP given in equa-

tion (23), we obtain

Φnlm (I, t) = −2πGΣP

kR

 ∑
mϕ=0,2,−2

δm,mϕ

 sgn(m) exp [i sgn(m)kRRc(Iϕ)]

2i
Jl

(
kR

√
2IR
κ

)

×
[
αMo(t)Φ(o)

n (Iz) + Me(t)Φ
(e)
n (Iz)

]
exp [−imΩPt], (A4)

where Jl is the lth order Bessel function of the first kind,

sgn(m) =

1, m ≥ 0,

−1, m < 0,
(A5)

and Φ
(o)
n (Iz) and Φ

(e)
n (Iz) are given by

Φ(o)
n (Iz) =

1

2π

∫ 2π

0

dwz sinnwz Fo

(
z, k(o)z

)
,

Φ(e)
n (Iz) =

1

2π

∫ 2π

0

dwz cosnwz Fe

(
z, k(e)z

)
. (A6)

In deriving equation (A4) we have used the Hansen-Bessel formula which provides the following integral representation

of Bessel functions of the first kind, ∫ 2π

0

dx exp [−ilx] exp [iα sinx] = 2πJl (α) (A7)

Using this we perform the wR integral as follows:∫ 2π

0

dwR exp [−ilwR] exp

[
ikR

√
2IR
κ

sinwR

]
= 2πJl

(
kR

√
2IR
κ

)
. (A8)
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We have also used the identity, ∫ 2π

0

dϕ exp [−imϕ] = 2π δm,0. (A9)

B. PERTURBATION BY ENCOUNTER WITH SATELLITE GALAXY

B.1. Computation of the disk response

To evaluate the disk response to satellite encounters using equation (22) we first evaluate the τ integral (with

ti → −∞) of the satellite potential given in equation (38) and then compute the Fourier transform of the result. This

yields the expression for the response in equation (39) with

Inlm(I, t) = exp [−iΩt]

∫ t

−∞
dτ exp [iΩτ ] Φnlm (I, τ)

=
exp [−iΩt]

(2π)
3

∫ 2π

0

dwz exp [−inwz]

∫ 2π

0

dwR exp [−ilwR]

∫ 2π

0

dwϕ exp [−imwϕ]

∫ t

−∞
dτ exp [iΩτ ] ΦP(z,R, ϕ, τ),

(B10)

where

Ω = nΩz + lΩR + mΩϕ. (B11)

We perform the inner τ integral of ΦP to obtain∫ t

−∞
dτ exp [iΩτ ] ΦP(z,R, ϕ, τ) = −GMP

vP
exp

[
i
ΩS
vP

] ∫ t−S/vP

−∞
dτ

exp [iΩτ ]√
τ2 + (R2 + ε2)/v2P

= −GMP

vP
exp

[
i
ΩS
vP

] ∫ (vPt−S)/
√
R2+ε2

−∞
dx

exp
[
i
(
Ω
√
R2 + ε2/vP

)
x
]

√
x2 + 1

= −2GMP

vP
exp

[
i
ΩS
vP

]
K0i

(
Ω
√
R2 + ε2

vP
,

vPt− S√
R2 + ε2

)
. (B12)

Here K0i is defined as

K0i(α, β) =
1

2

∫ β

−∞
dx

exp [iαx]√
x2 + 1

, (B13)

which asymptotes to the zero-th order modified Bessel function of the second kind, K0 (|α|), in the limit β → ∞. R
and S are respectively the perpendicular and parallel projections along the direction of vP of the vector connecting

the point of observation, (z,R, ϕ), with the point of impact, and are given by

R2 = [R sin (ϕ− ϕP) + Rd sinϕP]
2

+ [(R cos (ϕ− ϕP) −Rd cosϕP) cos θP − z sin θP]
2

S = (R cos (ϕ− ϕP) −Rd cosϕP) sin θP + z cos θP. (B14)

In the large time limit, i.e., t ≫ S/vP, K0i asymptotes to K0

(
|Ω|

√
R2 + ε2/vP

)
. We substitute ϕ ≈ wϕ and the

expressions for R and z in terms of (w, I) given in equations (A2) and (A3) in the above expressions for R and S.

Further substituting the resultant τ integral from equation (B12) in equation (B10), adopting the small IR limit and

performing the wR integral, we obtain

Inlm(I, t) ≈ −2GMP

vP
exp [−iΩt] × exp

[
−i

Ω sin θP cosϕP

vP
Rd

]
× 1

(2π)
2

∫ 2π

0

dwz exp [−inwz] exp

[
i
Ω cos θP

vP
z

] ∫ 2π

0

dϕ exp [−imϕ] exp

[
i
Ω sin θP cos (ϕ− ϕP)

vP
Rc

]
× Jl

(
Ω sin θP

vP

√
2IR
κ

cos (ϕ− ϕP)

)
K0i

(
Ω
√

R2
c + ε2

vP
,
vPt− Sc√
R2

c + ε2

)
, (B15)
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where Rc = R(R = Rc) and Sc = S(R = Rc). Here we have used the integral representation of Bessel functions of the

first kind given in equation (A7) to compute the integral over wR as follows:∫ 2π

0

dwR exp [−ilwR] exp

[
i
Ω sin θP

vP
cos (ϕ− ϕP)

√
2IR
κ

sinwR

]
= 2πJl

(
Ω sin θP

vP

√
2IR
κ

cos (ϕ− ϕP)

)
. (B16)

The expression for Inlm given in equation (B15) consists of the leading order expansion in
√

2IR/κ. A more precise

expression that is accurate up to second order in
√

2IR/κ is given, in the large time limit, as

Inlm(I, t) ≈ −2GMP

vP
exp [−iΩt] × exp

[
−i

Ω sin θP cosϕP

vP
Rd

]
× 1

(2π)
2

∫ 2π

0

dwz exp [−inwz] exp

[
i
Ω cos θP

vP
z

] ∫ 2π

0

dϕ exp [−imϕ] exp

[
i
Ω sin θP cos (ϕ− ϕP)

vP
Rc

]
×
[
ζ(0)Jl (χ) − iζ(1)J ′

l (χ) − 1

2
ζ(2)J ′′

l (χ)

]
, (B17)

where

χ =
Ω sin θP

vP

√
2IR
κ

cos (ϕ− ϕP), (B18)

and

ζ(0) = K0 (η) ,

ζ(1) =

√
2IR
κ

∂Rc

∂Rc

Rc√
R2

c + ε2
|Ω|
vP

K ′
0 (η) ,

ζ(2) =
2IR
κ

[(
∂Rc

∂Rc

)2 R2
c

R2
c + ε2

Ω2

v2P
K ′′

0 (η) +

{
∂2Rc

∂R2
c

Rc

R2
c + ε2

+

(
∂Rc

∂Rc

)2
ε2

(R2
c + ε2)

3/2

}
|Ω|
vP

K ′
0(η)

]
, (B19)

with

η =
|Ω|
√

R2
c + ε2

vP
. (B20)

Here each prime denotes a single derivative of the function with respect to its argument.

B.2. Special case: disk response for face-on impulsive encounters

The disk response in the general case, expressed by equation (40), depends on several encounter parameters: Rd, θP,

ϕP, and is complicated to evaluate. Therefore, as a sanity check, here we compute the response as well as corresponding

energy change for the special case of a satellite undergoing an impulsive, perpendicular passage through the center of

the disk.

As shown in van den Bosch et al. (2018) (see also Banik & van den Bosch 2021b), the total energy change due to a

head-on encounter of velocity vP with a Plummer sphere of mass MP and size ε is given by:

∆E = 4π

(
GMp

vP

)2 ∫ ∞

0

I20 (R)Σ(R)
dR

R
(B21)

where

I0(R) =

∫ ∞

1

MP(ζR)

Mp

dζ

ζ2(ζ2 − 1)1/2
(B22)

Using that the enclosed mass profile of a Plummer sphere is given by MP(R) = MPR
3(R2 + ε2)−3/2, we have that

I0(R) = R2/(R2 + ε2), which yields

∆E = 4π

(
GMp

vP

)2 ∫ ∞

0

Σ(R)
R3dR

(R2 + ε2)2
. (B23)
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Now we compute the disk response to the face-on satellite encounter using equations (39) and (B17-B20). For a

perpendicular face-on impact through the center of the disk we have Rd = 0 and θP = 0, implying that Rc becomes

Rc. The corresponding response is greatly simplified. In the large time and small IR limit, it is given by equation (39)

with

Inlm(I, t) ≈ −2GMP

vP
exp [−iΩt] δm,0 ×

1

2π

∫ 2π

0

dwz exp [−inwz] exp

[
i
Ωz

vP

]

× 1

2π

∫ 2π

0

dwR exp [−ilwR]K0

 |Ω|
vP

√√√√ε2 +

(
Rc +

√
2IR
κ

sinwR

)2
 , (B24)

where the ϕ integral only leaves contribution from the axisymmetric m = 0 mode. The wR integrand can be expanded

as a Taylor series and the wR integral can be performed to yield the following leading order expression for Inlm:

Inlm(I, t) ≈ i
GMP

vP
exp [−iΩt] δm,0 (δl,1 − δl,−1) × 1

2π

∫ 2π

0

dwz exp [−inwz] exp

[
i
Ωz

vP

]
×
√

2IR
κ

Rc√
ε2 + R2

c

|Ω|
vP

K ′
0

[
|Ω|
vP

√
ε2 + R2

c

]
. (B25)

In the impulsive limit, vP → ∞, this becomes

Inlm(I, t) ≈ i δn,0δm,0 (δl,1 − δl,−1)
GMP

vP

√
2IR
κ

Rc

ε2 + R2
c

exp [−i lκ t], (B26)

which can be substituted in equation (22) to yield

f1nlm (I, t) = f0(I) × δn,0δm,0 (δl,1 − δl,−1)
GMP

vP

lκ

σ2
R

√
2IR
κ

Rc

ε2 + R2
c

exp [−i lκ t], (B27)

with f0 given by equation (12). Hence, the response is given by

f1 (w, I, t) =

∞∑
n=−∞

∞∑
l=−∞

∞∑
m=−∞

exp [i(nwz + lwR + mwϕ)] f1nlm(I, t)

= f0(I) × 2GMP

vP

√
2κIR
σ2
R

Rc

ε2 + R2
c

cos (wR − κt) , (B28)

which shows that the satellite passage introduces a relative overdensity, f1 (w, I, t) /f0(I), that scales as ∼
Rc/

(
ε2 + R2

c

)
, which increases from zero at the center, peaks at Rc = ε, and asymptotes to zero again at large

Rc. The cos(wR − κt)-term describes the radial epicyclic oscillations in the response.

To compute the energy change due to the impact, we note that dE/dt = ∂E/∂I · dI/dt, where ∂E/∂I = Ω =

(Ωz,ΩR,Ωϕ) and dI/dt = ∂ΦP/∂w from Hamilton’s equations of motion. Thus the total phase-averaged energy

injected per unit phase-space can be obtained as follows:

⟨∆E (I)⟩ =
1

(2π)
3

∫
dw

∫ ∞

−∞
dt

dE

dt
f1(I, t) =

1

(2π)
3

∫
dw

∫ ∞

−∞
dt Ω · ∂ΦP

∂w
f1(I, t). (B29)

We can substitute the Fourier series expansions of ΦP and f1 given in equations (8) in the above expression and

integrate over w to obtain (Weinberg 1994a,b)

⟨∆E (I)⟩ = i
∑
nlm

(nΩz + lκ + mΩϕ)

∫ ∞

−∞
dtΦ∗

nlm(I, t)f1nlm(I, t). (B30)



28

We can now substitute the form of ΦP for a Plummer perturber given in equation (38), with rP and r given by

equations (36) and (37). The time integral can thus be written as∫ ∞

−∞
dtΦ∗

nlm(I, t)f1nlm(I, t) = − 1

(2π)
3

∫ 2π

0

dwz exp [inwz]

∫ 2π

0

dwR exp [ilwR]

∫ 2π

0

dwϕ exp [imwϕ]

×
∫ ∞

−∞
dt

GMP√
(vPt− z)

2
+ R2 + ε2

f1nlm(I, t) (B31)

Using equations (A2) and (A3) to express R and z in terms of (w, I), and substituting the form for f1nlm(I, t) from

equation (B27), we can perform the above integrals over w and t. Substituting the result in equation (B30) we obtain

⟨∆E (I)⟩ =

(
GMP

vP

)2

f0(I)
2κIR
σ2
R

R2
c

(ε2 + R2
c)

2 . (B32)

The total energy, ∆Etot, imparted into the disk by the impulsive satellite passage can be computed by integrating

the above expression over I and w (which simply introduces a factor of (2π)
3

since ⟨∆E (I)⟩ is already phase-averaged),

using equation (12) and transforming from Lz to Rc using the Jacobian dLz/dRc = Rcκ
2/2Ωϕ. This yields

∆Etot = 4π

(
GMP

vP

)2 ∫ ∞

0

dRc Rc Σ(Rc)
R2

c

(ε2 + R2
c)

2 . (B33)

This is indeed the expression for ∆Etot derived under the impulse approximation given by equation (B23).
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